6軸IMU~拡張カルマンフィルタ

概要

6軸IMU(慣性センサ)3軸加速度センサ + 3軸ジャイロセンサ。3軸加速度センサにてセンサローカル座標系(センサ座標系と称す)の3軸における重力加速度gの分量が出力され、観測方程式によりワールド座標系から見たピッチ・ロール角が計算できる。3軸ジャイロセンサからセンサ座標系の3軸まわりの角速度が出力され、状態方程式によりワールド座標系から見たピッチ・ロール角・ヨー角が計算できる。また、誤差(ノイズ)が存在し、そしてドリフトが蓄積していくので、補正の必要がある。補正には、拡張カルマンフィルタ状態空間モデルが利用できる。

3軸加速度センサ

3軸加速度センサのローカル座標のX軸・Y軸・Z軸とも回転する場合

3軸加速度計のX軸・Y軸・Z軸とも回転する
3軸加速度計のX軸・Y軸・Z軸とも回転する

回転行列

センサ座標系⇒ワールド座標系の回転行列R(ℇ)は、オイラー角がXYZ軸まわりの回転順として、
$$R(ℇ) = R_z(ψ)R_y(θ)R_x(ϕ)$$
$$R(ℇ) = \begin{bmatrix}cosψ&-sinψ&0\\sinψ&cosψ&0\\0&0&1\end{bmatrix}\begin{bmatrix}cosθ&0&sinθ\\0&1&0\\-sinθ&0&cosθ\end{bmatrix}\begin{bmatrix}1&0&0\\0&cosϕ&-sinϕ\\0&sinϕ&cosϕ\end{bmatrix}$$

観測方程式

$$A_{world} = \begin{bmatrix}0&0&-g\end{bmatrix}^T , A_{sensor} = \begin{bmatrix}Ax&Ay&Az\end{bmatrix}^T$$
$$A_{world} = R(ℇ)A_{sensor} ⇒ A_{sensor} = R(ℇ)^T A_{world}$$
$$\begin{bmatrix}Ax\\Ay\\Az\end{bmatrix}=\begin{bmatrix}csψcsθ&snψcsθ&-snθ\\csψsnθsnϕ-snψcsϕ&snψsnθsnϕ+csψcsϕ&csθsnϕ\\csψsnθsnϕ+snψsnϕ&snψsnθcsϕ-csψsnϕ&csθcsϕ\end{bmatrix}\begin{bmatrix}0\\0\\-g\end{bmatrix}$$
ただし、cs = cos 、sn = sin
よって、3軸加速度センサの観測方程式は以下の式で表される。また、Ax、Ay、Azは、ヨー角ψと関係ないことに気付き、逆にヨー角ψは、3軸加速度センサで推定できないことが分かる。
$$\begin{bmatrix}Ax\\Ay\\Az\end{bmatrix} = \begin{bmatrix}gsinθ\\-gcosθsinϕ\\-gcosθcosϕ\end{bmatrix}$$

傾斜角度

よって、重力加速度gの分量により3軸加速度計センサの傾斜角度が以下の式で表される。
$$\begin{bmatrix}ϕ\\θ\end{bmatrix} = \begin{bmatrix}tan^{-1} -\frac{Ay}{Az}\\tan ^{-1}\frac{Ax}{\sqrt{Ay^2 + Az^2}}\end{bmatrix}$$
ただし、ϕ、θは、それぞれワールド座標系から見たロール・ピッチ角と呼ばれる。ジンバルロック現象を避けたいので、ϕ ≠ ±90°。
なお、ワールド座標系のヨー角は、3軸加速度センサだけでは推定できないゆえに、3軸ジャイロセンサまたはコンパスセンサが必要になる。しかし、センサ融合手法として活用された拡張カルマンフィルタは、複数のセンサとも推定できる角度しか求めないので、ヨー角は、以下の拡張カルマンフィルタの状態方程式から除外される。ヨー角の求め方について、角速度ωzの時間積分して単独に求める。ヨー角の精度も高めるには、ヨー角を別途観測可能なコンパスセンサを加え、これで9軸IMU = 6軸IMU + 3軸コンパスセンサになる。9軸IMUについては、別途検討してみる。

3軸ジャイロセンサ

coordinate
coordinate

状態方程式

センサ座標系のジャイロセンサ角速度のωx、ωy、ωz(*)が互いに直交して、ワールド座標系のオイラー角の微分(**)が必ずしも直交してないので、(*)と(**)の相互関係を求めるには、オイラー角の微分がワールド座標系の軸まわりの分量に変換する必要がある。
$$R(ℇ)\begin{bmatrix}ωx\\ωy\\ωz\end{bmatrix} = \begin{bmatrix}0\\0\\\dot{ψ}\end{bmatrix}+R_z(ψ)\begin{bmatrix}0\\\dot{θ}\\0\end{bmatrix} + R_z(ψ)R_y(θ)\begin{bmatrix}\dot{ϕ}\\0\\0\end{bmatrix}$$
よって、回転行列を利用して、センサ座標系の角速度から、ワールド座標系のオイラー角の微分が求められる。
$$\begin{bmatrix}\dot{ϕ}\\\dot{θ}\\\dot{ψ}\end{bmatrix} = \begin{bmatrix}1&sinϕtanθ&cosϕtanθ\\0&cosϕ&-sinϕ\\0&−sinϕsecθ&cosϕsecθ\end{bmatrix}\begin{bmatrix}ωx\\ωy\\ωz\end{bmatrix}$$
ただし、ϕ、θ、ψはそれぞれワールド座標系から見たロール・ピッチ・ヨー角、ωx、ωy、ωzはセンサ座標系でのx、y、z軸周りの角速度を表す。ワールド座標系からセンサ座標系への回転はヨー・ピッチ・ロールの順とする。

回転角度での状態方程式の表現

ジャイロセンサの角速度からワールド座標系から見たロール・ピッチ角の計算は以下の式にて表される。
$$\begin{bmatrix}ϕ\\θ\end{bmatrix} = \begin{bmatrix}ϕ+\dot{ϕ}Δt\\θ+\dot{θ}Δt\end{bmatrix}$$
ただし、ヨー角の積分、加算はここで省略する。
*センサ座標系で3軸加速度センサから傾斜角度と3軸ジャイロセンサから回転角度を求めて、静的重み付け(経験値)で加算するセンサ融合の手法がある。出典4.を参照する。

誤差の補正

加速度センサの精度が悪く、とくに運動中の場合、但し加速度センサの誤差が蓄積しない。ジャイロセンサの精度が良く、但しドリフト現象が起きる。ドリフトにより、誤差がじわじわと蓄積していく。それで、補正しないといけない。加速度センサにジャイロセンサの出力値を組み合わせて、静的重み係数(経験値)を付ける相補フィルタに対して、時系列分析から異なるセンサの出力値に信頼性に関わる動的重み係数を付ける、いわゆるカルマンフィルタ(Kalman Filter)の再帰的アルゴリズム(手法)がある。フィルタとは誤差(ノイズ)をフィルタリングする意味合いがある。性能からみれば、論理的にカルマンフィルターが良いといわれる。

カルマンフィルタ

wikipedia: カルマンフィルタ (Kalman Filter、KFと略す) は、誤差のある観測値を用いて、ある動的システムの状態を推定あるいは制御するための、無限インパルス応答フィルタの一種である。この解釈では理解できたというわけではなく、以下カルマンフィルター、拡張カルマンフィルタで状態を推定してみる。

状態空間モデル

状態方程式、観測方程式は以下のとおり。
$$\begin{eqnarray*}&& x_t = F_{t-1}(x_{t-1}) + w_{t-1}\\&& y_t = H_t(x_t) + v_t\end{eqnarray*}$$
ただし、F(・)、H(・)は実装に際して、3軸加速度センサ、3軸ジャイロセンサに掲載した状態方程式、観測方程式のとおりで利用する。システム誤差、観測誤差の分布は期待値が0の正規分布(ガウス分布)にする。
$$\begin{eqnarray*}&& w_t \in N(0,Wt)\\&& v_t \in N(0,Vt)\end{eqnarray*}$$

パラメータ初期化

$$\begin{eqnarray*}&& \hat{x}_0 = E(x_0)\\&& \hat{P_0} = E((x_0-\hat{x_0})(x_0-\hat{x_0})^T)\end{eqnarray*}$$

状態値、共分散行列予測ステップ

$$\begin{eqnarray*}&& \bar{x_t} = F_{t-1}(\hat{x}_{t-1})\\&& \bar{P_t} = F_{t-1}\hat{P}_{t-1}F_{t-1}^T + W_{t-1}\end{eqnarray*}$$

カルマンゲイン、観測値、共分散行列更新ステップ

$$\begin{eqnarray*}&& K_t = \bar{P_t}H_t^T(H_t\bar{P_t}H_t^T + W_t)^{-1}\\
&& \hat{x_t} = \bar{x_t} + K_t(y_t – H_t\bar{x_t})\\&&\hat{P_t} = (I-K_tH_t)\bar{P_t} \end{eqnarray*}$$

拡張カルマンフィルタ

拡張カルマンフィルタ(Extended Kalman Filter、EKFと略す)は、非線形フィルタリングである。前述した状態方程式、観測方程式より、以下の状態空間モデルのf(⋅)が非線形であり、6軸IMU(慣性センサ)の角度計算に拡張カルマンフィルタが適用される。非線形であるf(⋅)の1次微分を線形化とし、カルマンフィルタのアルゴリズムが適用可能となる。しかし、f(⋅)の微分ではf(⋅)の一部しか表現できず、この線形化処理(1次微分)に誤差を大きく招く場合がある。
$$\begin{eqnarray*}&& \hat{F}_t =\frac{\partial f_t(x)}{\partial x}|_{x=\hat{x}_{t-1}}\end{eqnarray*}$$

状態空間モデル

$$\begin{eqnarray*}&& x_t = \hat{F}_{t-1}(x_{t-1}) + w_{t-1}\\&& y_t = H_t(x_t) + v_t\end{eqnarray*}$$

パラメータ初期化

$$\begin{eqnarray*}&& \hat{x}_0 = E(x_0)\\&& \hat{P_0} = E((x_0-\hat{x_0})(x_0-\hat{x_0})^T)\end{eqnarray*}$$

状態値、共分散行列予測ステップ

$$\begin{eqnarray*}&& \bar{x_t} = \hat{F}_{t-1}(\hat{x}_{t-1})\\&& \bar{P_t} = \hat{F}_{t-1}\hat{P}_{t-1}\hat{F}_{t-1}^T + W_{t-1}\end{eqnarray*}$$

カルマンゲイン、観測値、共分散行列更新ステップ

$$\begin{eqnarray*}&& K_t = \bar{P_t}H_t^T(H_t\bar{P_t}H_t^T + W_t)^{-1}\\
&& \hat{x_t} = \bar{x_t} + K_t(y_t – H_t\bar{x_t})\\&&\hat{P_t} = (I-K_tH_t)\bar{P_t} \end{eqnarray*}$$

6軸IMUへの実装

coming soon…

出典

1.wikipedia: カルマンフィルタ、オイラー角
2.Analog Device AN-1057、アプリケーション・ノート、加速度センサーによる傾きの検出、著者:Christopher J. Fisher
3.マルチボディダイナミクスの基礎―3次元運動方程式の立て方、著者:田島 洋
4.センサ融合を加速度センサやジャイロスコープに適用、著者:Bonnie Baker
5.基礎からわかる時系列分析 Rで実践するカルマンフィルタ・MCMC・粒子フィルタ、著者:萩原淳一郎 等

研究開発・検証試作に提案するロボット翔・電子部品ストアにロボット・ドローン関連部品が品揃えています。どうぞご利用ください

ロータリエンコーダによる速度計算

wikipedia:「ロータリエンコーダ(英: rotary encoder)は、入力軸の回転の変位を内蔵した格子円盤を基準としてデジタル信号として出力する角位置センサである。回転を測定するセンサではもっとも一般的である。同様の仕組みで直線変位を検出するものをリニアエンコーダという。 そもそもは回転角測定用検出器としての考案であるが、ロボットや情報機器のサーボ系統の位置決めなど、新たな使用用途が確立されてきている。 」
光学式LEDセンサを使用したエンコーダに、非接触型磁気センサを使用し、回転の速度と方向を検出するインクリメンタル・ロータリー・エンコーダ(ホールセンサを使用したエンコーダ)がある。
以下、ホールセンサを使用したエンコーダにより、車輪の直線速度を計算してみる。

ロータリエンコーダについて
ロータリエンコーダについて

減速機つきDCモータの場合、
分解能 = 車輪1回転の場合に出力されるパルス数=基礎パルス数x減速比
例:上図のロータリエンコーダの基礎パルス数 = 12 、減速比100の場合、
分解能 = 12 x 100 = 1200

よって、車輪の直線速度は以下の式より計算できる。

車輪の直線速度 = 車輪の円周の長さ ×(カウントされたパルスの数 / 分解能)/ パルスをカウントした時間

以上。

研究開発・検証試作に提案するロボット翔・電子部品ストアにロボット・ドローン関連部品が品揃えています。どうぞご利用ください

DCブラッシュモータのPID制御

古典制御

モータへの入力(PWM制御のオンの時間幅より得られた正弦波の交流電圧)とモータからの出力(エンコーダより得られたモータ軸の回転後位置の値)に注目して、しかしピッタリ、しかも早く回転後の目標値に達するには、入力値と出力値は単純に線形関係では済まず、以下のイラストに示される、PID(P:エンコーダ出力値と目標値の差の線形比率成分、I:エンコーダ出力値と目標値の差の積分成分、D:エンコーダ出力値と目標値の差の微分成分)が考案された古典制御である。

Wikipedia PID制御のブロック図
Wikipedia PID制御のブロック図

PID制御の実現について、以下のようにArduinoボードに実装する。

// p->output:モータへの入力、p->Encoder:モータからの出力
input = p->Encoder - p->PrevEnc;
Perror = p->TargetTicksPerFrame - input;
// PIDのP成分、I成分、D成分を線形合成する
output = (Kp * Perror - Kd * (input - p->PrevInput) + p->ITerm) / Ko;
p->PrevEnc = p->Encoder;
// 簡略化を図るゆえにoutputの最大値の判定およびその際の処理を省略する
output += p->output;
p->ITerm += Ki * Perror;
p->output = output;
p->PrevInput = input;

PID制御のP I Dに伴う係数のKp Ki Kdが、以上ソースコードを実装したArduinoボード、モータコントローラ、モータを接続して、ロボットの実重さ、実走行環境にて実験を行い、Kp Ki Kdを決める方法がある。これを別途記述とする。

以上ソースコードの出典は以下のとおり、但し簡略化を図るゆえにソースの一部を削除したことがあり、ご注意願います。

https://github.com/hbrobotics/ros_arduino_bridge/blob/indigo-devel/ros_arduino_firmware/src/libraries/ROSArduinoBridge/diff_controller.h

現代・ポスト現代制御

現代制御では状態空間モデルが用いられて、ポスト現代制御では代表的なものにロバスト制御や適応制御がある。ニューラルネットワークを用いる深層学習、強化学習の活用が期待される。

以上。

研究開発・検証試作に提案するロボット翔・電子部品ストアにロボット・ドローン関連部品が品揃えています。どうぞご利用ください

低コスト超軽量Benewake LED ライダーDE-LIDAR TF01

Benewake LED DE-LIDAR TF01主な特長

・高感度
・検出範囲:最大10m(@ 90%反射)
・検出周波数:500Hz
・耐環境光:100kLux環境光以下屋外でも動作
・形状:コンパクトサイズ51mm x 36mm x 48mm、軽量<50g
・精度:cmレベル(1%相対誤差)
・ドローン、ロボットに最適

紹介ビデオ

ロボット翔-電子部品ストアより購入可能

DE-LIDAR TF01 単方向ライダー

研究開発・検証試作に提案するロボット翔・電子部品ストアにロボット・ドローン関連部品が品揃えています。どうぞご利用ください

Bluetooth 4.0 BLE接続について

ロボット側にBLEモジュールが付いて、今回はBLEモジュールが付く情報連絡端末が、Bluetoothを介してロボットの動きをリモート監視、制御を行います。
全体のシステム構成としては、ロボット(BLE)~(BLE)情報連絡端末(WiFi)~WiFiアクセスポイント~(ether)クラウドサーバ(ether)~WiFiアクセスポイント~(WiFi)ブラウザまたはスマホアプリの形となります。

1、アクセス方式:SPPシリアル

2、プロトコール GATT、SDK化したのは、NOBLE(セントラル)/BLENO(ペリフェラル)、Node.js、Andriodなどいくつかのバージョンが用意されている。これでメソッドと、イベントをきちんとおさえれば、MVC開発の感覚で開発が進められる。作者に感謝&御礼。
https://github.com/sandeepmistry/
http://yegang.hatenablog.com/entry/2014/08/09/195246
https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/ch04.html

3、役割分担、情報連絡端末はCentral(セントラル)、ロボットはPeripheral(ペリフェラル)、ペリフェラルは外部設備、端末の意味合いと思って良い。携帯無線、WiFiとは真反対にして、ペリフェラルはアドバタイズメントを出して、自分の存在を一所懸命を周りに知らせる。セントラルが近くにあれば、ペリフェラルの存在を知り、必要であれば接続する。

4、サーバ/クライアント
セントラル/ペリフェラルとはイコールではない、サービス提供者の立場から、セントラルはサーバでも可能だし、クライアントでも可能だ。ペリフェラルも同様。

5、いくつかのキーワード
Serviceサービス(キャラクタリスティクスのコンテナ)、Characteristicsキャラクタリスティクス(送受信データのコンテナー)、UUID(サービス、キャラクタリスティクスを区分するための識別子)、writeキャラクタリスティクスvalue書き込み、readキャラクタリスティクスvalue読み込み、Notification知らせ(Subscribe登録しておけば、キャラクタリスティクスvalue変更の際、相手に知らせる)、Subscribe登録など。

6、開発手順
gatttoolツールで、GATTで定義したサービス、キャラクタリスティクスをよく確認して、それからNode.jsでプログラムを綴る。

研究開発・検証試作に提案するロボット翔・電子部品ストアにロボット・ドローン関連部品が品揃えています。どうぞご利用ください