ポアソン分布~賢い在庫管理、宝くじまで

ポアソン分布

世の中で、ある事象が一定の頻度(確率)で、ある期間中にいつでも起きる可能性があり、ただし正確な発生時刻が知ることができない。例えば、自動車が交差点を通過、赤ちゃんが病院で生まれ、スーパーで商品が販売され、機械が故障との事象がある。機械は月に1回故障、スーパーは1日に牛乳50本を販売、病院に1時間に3人の赤ちゃんが誕生、15分の間に40台の車が交差点を通過したという具体的事象に対して、特定の期間における独立した事象の発生数の確率分布を求めるには、以下のポアソン分布が使用可能である。
$$P[X(t)=k]=\frac{(λt)^k e^{-λt}}{k!}$$
ただし、tは連続時間の長さ、λは単位時間に事象発生の期待値、eは自然対数の底(ネイピア数)。事象が期間t内に発生数がkの確率を計算する。ポアソン分布の期待値、分散ともλである。

在庫管理、ナンバーズ予測への応用例

【在庫管理の使用例】某ECサイトでは、1日に平均でPCを2台販売している。在庫切れの確率を5%以下に抑えたいので、どれだけの量の在庫が必要なのか。
1日にPCを0台販売の確率:
$$P[X(1)=0]=\frac{(2*1)^0 e^{-2*1}}{0!}=e^{-2}$$
1日にPCを1台販売の確率:
$$P[X(1)=1]=\frac{(2*1)^1 e^{-2*1}}{1!}=2e^{-2}$$
1日にPCを2台販売の確率:
$$P[X(1)=2]=\frac{(2*1)^2 e^{-2*1}}{2!}=2e^{-2}$$
1日にPCを3台販売の確率:
$$P[X(1)=3]=\frac{(2*1)^3 e^{-2*1}}{3!}=\frac{4}{3}e^{-2}$$
1日にPCを4台販売の確率:
$$P[X(1)=4]=\frac{(2*1)^4 e^{-2*1}}{4!}=\frac{2}{3}e^{-2}$$
1日にPCを5台販売の確率:
$$P[X(1)=5]=\frac{(2*1)^5 e^{-2*1}}{5!}=\frac{4}{15}e^{-2}$$
なので、1日にPCを3台以上販売の確率:
$$ P[X(1)>2]=1-\sum_{i=0}^{i=2}P[X(1)=i]\\\scriptsize=1-e^{-2}-2e^{-2}-2e^{-2}=0.3233$$
1日にPCを4台以上販売の確率:
$$P[X(1)>3]=1-\sum_{i=0}^{i=3}P[X(1)=i]\\\scriptsize=1-e^{-2}-2e^{-2}-2e^{-2}-\frac{4}{3}e^{-2}=0.1429$$
1日にPCを5台以上販売の確率:
$$P[X(1)>4]=1-\sum_{i=0}^{i=4}P[X(1)=i]\\\scriptsize=1-e^{-2}-2e^{-2}-2e^{-2}-\frac{4}{3}e^{-2}-\frac{2}{3}e^{-2}=0.0527$$
1日にPCを6台以上販売の確率:
$$P[X(1)>5]=1-\sum_{i=0}^{i=5}P[X(1)=i]\\\scriptsize=1-e^{-2}-2e^{-2}-2e^{-2}-\frac{4}{3}e^{-2}-\frac{2}{3}e^{-2}-\frac{4}{15}e^{-2}=0.0166$$
つまり、1日にPCを6台以上販売の確率が1.66%なので、PC 5台以上(最低5台)の在庫が確保できれば、在庫切れの確率を5%以下に抑えられる。

【ナンバーズ予測の使用例】
0~9の数字の出た回数を1000回分もしくは2000回分で平均して、λにしておく。最近の9回、0~9の出た回数+今度も出る(+1)確率を、大きさが大から小の順で並べて、確率が大きい数字が予測の結果とする。注意!:あくまで確率論からの予測(可能性)なので、ポアソン分布から宝くじが当たる意味ではない。

【発明者が残した言葉】
「私がランダム現象を記述する1つの確率分布を確立した」 by フランス数学者・物理学者ポアソン。

ロボット・ドローン部品お探しなら
ロボット翔・電子部品ストア