概要
単純ベイズ分類器(Classifier)はベイズ定理(Bayes’ theorem)の条件付き確率(事後確率、事前確率)による分類器また分類法である。
$$ \small P(Class | F_1, F_2,,,F_n) = \frac{P(F_1, F_2,,,F_n | Class) P(Class)}{P(F_1, F_2,,,F_n)} $$
\( P(Class | F_1, F_2,,,F_n) \)は事後確率、\( P(F_1, F_2,,,F_n | Class) \)は事前確率で、P(Class)とも先に求められるとされる。{P(F_1, F_2,,,F_n)は分類空間の類(Class)同士に変わらないので、計算が省略可能となる。
また特徴空間にある特徴(Feature)同士がそれぞれ相関しないことに簡略化して、単純ベイズ分類器となる。
$$ \scriptsize P = \frac{P(F_1|Class)P(F_2|Class)…P(F_n|Class)|Class) P(Class)}{P(F_1, F_2,,,F_n)} $$
前述kNN、kd-treeとも分類法だが、条件付き確率のベイズ定理を生かした、計算量が少ない確率論らしい分類法である。
実装の例
訓練データセットと単純ベイズ分類器により、ある言葉リストから暴力傾向あるかどうかを判別する。
''' Created on Oct 19, 2010 @author: Peter ''' from numpy import * # # Load postingList -> myVocabList. # def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec # # Create myVocabList from postingList. # def createVocabList(dataSet): vocabSet = set([]) #create empty set for document in dataSet: vocabSet = vocabSet | set(document) #union of the two sets return list(vocabSet) # # Create 2 vectors(2 categories) from myVocabList. # def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print(f"the word: {word} is not in my Vocabulary!") return returnVec # # Create 2 conditional probability vectors(p0Vect & p1Vect) from trainMatrix. # Create 1 category probabilitiesies(pAbusive) from trainCategory. # def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords); p1Num = ones(numWords) #change to ones() p0Denom = 2.0; p1Denom = 2.0 #change to 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = log(p1Num/p1Denom) #change to log() p0Vect = log(p0Num/p0Denom) #change to log() return p0Vect,p1Vect,pAbusive # # Perform bayes formula. 1: testEntry is abusive, 0: not abusive. # def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 # # Test 2 testEntries. # def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(f"{testEntry}, 'classified as:' {classifyNB(thisDoc,p0V,p1V,pAb)}") testEntry = ['stupid', 'garbage'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(f"{testEntry}, 'classified as:' {classifyNB(thisDoc,p0V,p1V,pAb)}") # # main. # if __name__ == '__main__': testingNB()
ソースコード→https://github.com/soarbear/Machine_Learning/tree/master/bayes
結果
参考文献
「Machine Learning in Action」、Peter Harrington氏
追記
単純ベイズは、回帰に使われた報道がある。
参考文献 Technical Note:Naive Bayes for Regression