粒子フィルタ

はじめに

ガウス分布に従う時系列確率変数の非線形関数は必ずしもガウス分布にならない、また非ガウス分布の確率変数が存在するから、優雅なるカルマンフィルタファミリーには限界あり、無理な場合がある。非線形、非ガウス時系列空間モデルに対して、1990年代から未知の状態密度関数p(x)に対して、既知の密度関数q(x)、p(x)⊂q(x) から逐次モンテカルロ法(逐次重要性サンプリングSequential Importance Samplingに、リサンプリングResampling)による粒子フィルタ(パーティクル・フィルタ、PF)が提案されて以来、研究・応用が活発になっている。粒子フィルタがROSのSLAM Gmappingアルゴリズムに組まれている。

粒子フィルタ

状態空間モデル

・システムモデル(状態方程式)
$$x_t = f_t(x_{t-1},v_t)$$

・観測モデル(観測方程式)
$$y_t = h_t(x_t,w_t)$$

ただし、\( v_t、w_t\)はフィルタリングをかける事前に既知で、非ガウス分布可能、\( y_t\)は2項分布またポアソン分布に従うcount dataのモデル化なども可能になる。また、粒子フィルタには、\( v_t、w_t\)はガウス分布でも構わない。
以下に粒子\( x_t^{[i]} \)~\( f_t (x_t^{[i]} | x_{t−1}^{[i]}, v_t) \)として、粒子フィルタリングの手順を示す。

粒子フィルタリングの手順

1、初期化\( (t=0) \)
初期分布\( f_t (x_0^{[i]}, v_0) \)に従って、n個の粒子\( \{x^{[i]}_0 | i = 1,2, ⋯ ,n\} \)を無作為に発生させる。

2、一期先予測\( (t=t+1) \)
粒子\( x_t^{[i]} \)を\( f_t (x_t^{[i]} | x_{t−1}^{[i]}, v_t) \)に従って状態推移させ、それぞれの類似値が\(x_t^{[i]}\)である粒子の集合\( \{\hat{x}^{[i]}_t | i = 1,2, ⋯ ,n\} \)を発生させる。

3、フィルタリング
・重み計算
粒子\( \hat{x}_t^{[i]} \) の重み\( w_t^{[i]} = p(y_k | \hat{x}_k^{[i]}) \)を計算する。
ただし、\( p(y_k | \hat{x}_k^{[i]}) \)は、尤度であり、観測値または類似値ではないことに注意する。

・重みの正規化
$$\hat{w}_t^{[i]} = \frac{w_t^{[i]}}{ \sum_{i=1}^n w_t^{[i]} }$$

・リサンプリング
粒子\( \hat{x}^{[i]}_0 \)を\(\hat{w}_t^{[i]}\)に従った確率でリサンプリングし、粒子集合\( \{x^{[i]}_t | i = 1,2, ⋯ ,n\} \)を発生させる。

・2に戻る

参考文献

粒子フィルタ、著者:樋口知之 先生

ロボット・ドローン部品お探しなら、ロボット翔をご利用下さい