9軸センサーICM-42688+MMC5983 6軸&9軸回転ベクトル&3軸オイラー角 MAX1000Hz同時出力 ROS/ROS2対応 USB接続

はじめに

令和3年度発売の旧型機種のhayate_imu v2は多くの企業、学校法人のユーザー様にご利用いただいたことに、厚く御礼申し上げます。ありがとうございます。旧機種はv2.4までとリリースさせていただいておりますが、いまユーザー様のお手元にある旧バージョン製品のファームバージョンアップは、ユーザー様のもとで実施可能なので、詳細については、別途順次ご案内申し上げます。昨今の半導体ショックにより供給不足、価格高騰などの影響を受ける中、後継機種の開発を続けてきた結果、令和5年4月下旬より、9軸IMU/AHRS haya_imu v3.2の発売をお知らせさせていただきます。

製品紹介

Cortex-M4 (クロック周波数120MHz)、新型6軸IMUのICM-42688、高精度3軸AMR方式地磁気センサMMC5983MAの実装により、通常出力モード、デモストレーションモード、キャリブレーションモード(初期バイアス測定)、6軸フュージョン回転ベクトルクォータニオン、9軸フュージョン回転ベクトルクォータニオン、3軸オイラー角の同時出力は最大1000Hzまで可能となります。ROS/ROS2とも対応しており、ドライバーはGithubよりダウンロードして製品とセットでご利用いただけます。

主な仕様

・型番 haya_imu v3.x
・内蔵チップ Microchip Cortex-M4(120MHz)、ICM-42688-VまたはICM-42688-P、MMC5983MA実装
・外部接続 USB2.0+ Type-C、USB+5V給電
・最大出力レート
  - 6軸/9軸フュージョン回転ベクトル四元数 1000Hz
  - 3軸オイラー角  1000Hz
  - 3軸加速度(アクセル)データ  1000Hz
  - 3軸角速度(ジャイロ)データ  1000Hz
  - IMU内部温度データ      1000Hz
  - 3軸地磁気(コンパス)データ  500Hz

・測定レンジ
  - 加速度(アクセル)センサ  ±8g
  - 角速度(ジャイロ)センサ  ±2000dps
  - 地磁気(コンパス)センサ  ±800µT

・バイアス測定補正 初期バイアス測定、動作時即時測定、内蔵補正機能あり
・消費電力 150mW以下(環境温度21℃ 実測値)
・寸法 38.0mm × 39.0mm × 4.8mm(突起物含む)
・取付穴 M3x4、隣り合う穴の中心間距離32.0mm

主な特長

・サービスモード 通常出力モード、デモンストレーションモード、キャリブレーションモード
・結果出力 6軸フュージョン回転クォータニオン、9軸フュージョン回転クォータニオン、3軸オイラー角1KHzまで同時出力、結果出力レートに関わらずIMU/地磁気センサのデータサンプリング周波数、フュージョン周波数は常に1000Hz/500Hzに設定済み
・初期バイアス測定 使用環境変化あった際に利用可能なキャリブレーションモードで最短数分程度で初期バイアス測定完了、MCUフラッシュに自動的に保存して、動作時に読み込んで即時バイアス測定&補正あり
・地磁気センサ温度補償 地磁気センサは、計測時間1msにわたるセットリセット計測(温度補償機能)使用済み
・磁気外乱による干渉 受けにくいことが当社実験(磁束密度約2G)にて確認済み
・ROS/ROS2対応 本体にはROS/ROS2ライブラリを実装せず、対向装置にドライバーインストールにより実現

詳細情報

【製品名称】haya_imu v3.x
【開発会社】ROBOT翔(株式会社翔雲)
【発売時期】令和5年4月下旬頃
【商品情報】9軸センサー6軸&9軸回転ベクトル 3軸オイラー角 MAX1000Hz同時出力 ROS/ROS2対応 USB接続 | ROBOT翔

参考情報

エンコーダ付きDCモータPID制御の実験-haya_imu応用例

3+

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

rosserialをSTM32F4に対応させてみる

はじめに

rosserialは、ROSノードらをシリアルで繋ぐ役割を果たすROSパッケージとしてよく知られている。但し、ArduinoノードとしてSTM32F4は公式に対応されておらず、今回はROS melodicベースのArduinoノード(STM32F411CEU6搭載の開発ボード、通称Balck pill)にrosserialを立ち上げてみた。ソースコードはGithubに公開済み。ROS melodicにおいて動作確認済み。

ソースコード

https://github.com/soarbear/stm32f4_rosseialリポジトリーとして公開済み。

環境

ターゲットボード(MCU) Black pill(STM32F411CEU6実装)
コンパイル環境 Arduino V1.8.13
テスト環境 Ubuntu 18.04 / ROS melodic

参考文献

rosserial melodic-devel branch@Github

0

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

外部32.768KHzクリスタルからSAMD21クロック設定まで

はじめに

外部32.768KHz水晶発振子からSAMD21クロックを48MHzに設定する手順、ソースをメモにしておく。

設定手順

1. DFLL48Mリファレンスとして使用されるXOSC32Kクロック(オンボード外部32.768Hzクリスタル)を有効にする。
2. XOSC32Kを汎用クロックジェネレーター1として使用する。
3. 汎用クロックジェネレータ1を汎用クロックマルチプレクサ0(DFLL48Mリファレンス)のソースとして使用する。
4. DFLL48Mクロックを有効にする。
5. 汎用クロックジェネレータ0をDFLL48Mに切り替える。
6. CPUのクロックは48MHzで動作する。

ソースコード

下記参考資料から抜粋したソースは以下のとおり。

/* Set 1 Flash Wait State for 48MHz, cf tables 20.9 and 35.27 in SAMD21 Datasheet */
NVMCTRL->CTRLB.bit.RWS = NVMCTRL_CTRLB_RWS_HALF_Val ;

/* Turn on the digital interface clock */
PM->APBAMASK.reg |= PM_APBAMASK_GCLK ;

/* Enable XOSC32K clock (External on-board 32.768Hz oscillator) */
SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_STARTUP( 0x6u ) | /* cf table 15.10 of product datasheet in chapter 15.8.6 */
                       SYSCTRL_XOSC32K_XTALEN | SYSCTRL_XOSC32K_EN32K ;
SYSCTRL->XOSC32K.bit.ENABLE = 1 ; /* separate call, as described in chapter 15.6.3 */
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_XOSC32KRDY) == 0 )
{
  /* Wait for oscillator stabilization */
}

/* Software reset the module to ensure it is re-initialized correctly */
GCLK->CTRL.reg = GCLK_CTRL_SWRST ;
while ( (GCLK->CTRL.reg & GCLK_CTRL_SWRST) && (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) )
{
  /* Wait for reset to complete */
}

/* Put XOSC32K as source of Generic Clock Generator 1 */
GCLK->GENDIV.reg = GCLK_GENDIV_ID( GENERIC_CLOCK_GENERATOR_XOSC32K ) ; // Generic Clock Generator 1
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
  /* Wait for synchronization */
}

/* Write Generic Clock Generator 1 configuration */
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID( GENERIC_CLOCK_GENERATOR_OSC32K ) | // Generic Clock Generator 1
                    GCLK_GENCTRL_SRC_XOSC32K | // Selected source is External 32KHz Oscillator
//                  GCLK_GENCTRL_OE | // Output clock to a pin for tests
                    GCLK_GENCTRL_GENEN ;
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
  /* Wait for synchronization */
}

/* Put Generic Clock Generator 1 as source for Generic Clock Multiplexer 0 (DFLL48M reference) */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( GENERIC_CLOCK_MULTIPLEXER_DFLL48M ) | // Generic Clock Multiplexer 0
                  GCLK_CLKCTRL_GEN_GCLK1 | // Generic Clock Generator 1 is source
                  GCLK_CLKCTRL_CLKEN ;
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
  /* Wait for synchronization */
}

/* Enable DFLL48M clock */  
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE;
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLRDY) == 0 )
{
  /* Wait for synchronization */
}
SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP( 31 ) | // Coarse step is 31, half of the max value
                       SYSCTRL_DFLLMUL_FSTEP( 511 ) | // Fine step is 511, half of the max value
                       SYSCTRL_DFLLMUL_MUL( (VARIANT_MCK + VARIANT_MAINOSC/2) / VARIANT_MAINOSC ) ; // External 32KHz is the reference
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLRDY) == 0 )
{
  /* Wait for synchronization */
}

/* Write full configuration to DFLL control register */
SYSCTRL->DFLLCTRL.reg |= SYSCTRL_DFLLCTRL_MODE | /* Enable the closed loop mode */
                         SYSCTRL_DFLLCTRL_WAITLOCK |
                         SYSCTRL_DFLLCTRL_QLDIS ; /* Disable Quick lock */
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLRDY) == 0 )
{
  /* Wait for synchronization */
}

/* Enable the DFLL */
SYSCTRL->DFLLCTRL.reg |= SYSCTRL_DFLLCTRL_ENABLE ;
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLLCKC) == 0 ||
        (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLLCKF) == 0 )
{
  /* Wait for locks flags */
}
while ( (SYSCTRL->PCLKSR.reg & SYSCTRL_PCLKSR_DFLLRDY) == 0 )
{
  /* Wait for synchronization */
}

/* Switch Generic Clock Generator 0 to DFLL48M. CPU will run at 48MHz. */
GCLK->GENDIV.reg = GCLK_GENDIV_ID( GENERIC_CLOCK_GENERATOR_MAIN ) ; // Generic Clock Generator 0
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
  /* Wait for synchronization */
}

/* Write Generic Clock Generator 0 configuration */
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID( GENERIC_CLOCK_GENERATOR_MAIN ) | // Generic Clock Generator 0
                    GCLK_GENCTRL_SRC_DFLL48M | // Selected source is DFLL 48MHz
//                  GCLK_GENCTRL_OE | // Output clock to a pin for tests
                    GCLK_GENCTRL_IDC | // Set 50/50 duty cycle
                    GCLK_GENCTRL_GENEN ;
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
  /* Wait for synchronization */
}

参考資料

ArduinoCore-samd | Github

0

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

9軸IMUセンサ 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応

V2.5 NEW主な変更点

【V2.4】令和5年3月にリリース済み
較正モードの追加により、ジャイロスコープ、加速度センサ、地磁気センサの初期バイアスは出荷時の測定のみならず、ユーザー様のもとでも測定することはできる。 ※ ユーザー様のお手元にある旧バージョン製品のファームウェアのバージョンアップは、ユーザー様のもとで実施可能なので、詳細については、別途順次ご案内する。

【V2.5】令和5年12月にリリース済み
TDK Smart Motion DMPコードリビジョンに伴うファームウェアのアップデート、ROSパッケージ更新なし。
※ ユーザー様のお手元にある旧バージョン製品のファームウェアのバージョンアップは、ユーザー様のもとで実施可能なので、令和5年12月末までご案内済み。

はじめに

9軸IMU(型番hayate_imu)は、コロナ禍の中で開発した新商品、令和3年3月まで開発~製造、令和3年4月上旬の出荷と予定して、皆さんの学術研究にお役に立てるようと願って、どうぞご検討ご利用のほど宜しくお願い申し上げます。

製品紹介

9軸センサhayate imu、低消費電力プロセッサーCortexM0+、TDK MPU-9250後継機種である、1.71V低電圧で動作可能なICM-20948使用、6軸/9軸融合クォータニオン(四元数)はFPGA on chip(DMP3)から低遅延出力、別途ソフトでフュージョン必要なし、最大出力レート225Hz、同時に加速度(アクセル)3軸データ225Hz、角速度(ジャイロ)3軸データ225Hz、地磁気(コンパス)3軸データ70Hzまで出力可能、補正済み、ROS対応。ロボット、ドローンなど低遅延が必要とされる科学研究、電子機械の検証試作ヘの活用が期待される。

主な仕様

・ 型番 hayate_imu rev.C 6軸フュージョン or ver.B 9軸フュージョン切替可能
・ 内蔵チップ Cortex-M0+、TDK Invensense ICM-20948(9軸)実装 ※1
・ 外部接続 USB Type-Cコネクタ、USB +5V給電 ※2 ※3
・ 最大出力レート ※4
  - 6軸フュージョン or 9軸フュージョン回転ベクトル四元数 225Hz
  - 加速度(アクセル)3軸センサ  225Hz
  - 角速度(ジャイロ)3軸センサ  225Hz
  - 地磁気(コンパス)3軸センサ  70Hz

・ 測定レンジ
  - 加速度(アクセル)センサ  ±16g
  - 角速度(ジャイロ)センサ  ±2000dps
  - 地磁気(コンパス)センサ  ±4900µT

・ 消費電力 50mW以下(環境温度21℃の実測値)
・ 寸法 30mm × 31.4mm × 4.8mm(突起物含む)
・ 重量 4g以下
・ 取付穴 M3x4、隣り合う穴の中心間距離24.4mm

※1 内蔵Cortex-M0+とICM-20948間インターフェースはSPI(4Mbps)使用、加速度センサ(消耗)、角速度センサ(温度、ドリフト)、地磁気センサ(磁気変動)にダイナミック補正。
※2 USB対向装置OS環境 Ubuntu 16.04以降推奨。
※3 USB対向装置ROS環境 Kinetic以降推奨。
※4 最大出力レートはhayate imuの実力値、IMU対向装置(USB接続先)での実効値はその装置のリソース(CPUクロック周波数、メモリ容量・スピード)に関わる。

デモ情報

hayate_imu ROSパッケージ | Githubリポジトリ

9軸IMUセンサ ICM-20948内蔵 6軸/9軸シュージョン 出力レート225Hz 低遅延 USB出力 ROS対応 | YouTube

9dof_hayate_imu_youtube
9dof_hayate_imu_youtube

販売情報

【製品名称】hayate_imu rev.C 6軸フュージョン or ver.B 9軸フュージョン
【開発会社】ROBOT翔(株式会社翔雲)
【発売時期】令和3年4月上旬頃
【取扱店舗】9軸IMUセンサ 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応 | ROBOT翔

後継機種

9軸センサーICM-42688+MMC5983 6軸&9軸回転ベクトル&3軸オイラー角 MAX1000Hz同時出力 ROS/ROS2対応 USB接続

参考資料

Migrating from MPU-9250 to ICM-20948-InvenSense
http://wiki.ros.org/ja/9dof_hayate_imu

関連記事

エンコーダ付きDCモータPID制御の実験-hayte_imu応用例
9軸IMUセンサ ICM-20948をロボットに組み込もう
オイラー角~ジンバルロック~クォータニオン
ROS・Unity・ロボット・ドローン姿勢制御に関わるクォータニオン

2+

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

海外工場視察の記事一覧

0

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア