メカナム車輪四駆の運動学方程式

4wdメカナム車輪駆動の運動方程式
4wdメカナム車輪駆動の運動方程式

順運動学forward kinematic方程式

メカナム車輪の回転速度はロボット車体中心のx・y軸方向線形速度とz軸まわりの角速度より、以下の式(順運動学方程式)で表される。

// 左右輪距離、前後輪距離
#define WHEEL_SEPARATION_WIDTH DISTANCE_LEFT_TO_RIGHT_WHEEL/2
#define WHEEL_SEPARATION_LENGTH DISTANCE_FRONT_TO_REAR_WHEEL/2
// 回転速度単位:rad / s
wheel_front_left =(linear.x-linear.y-(WHEEL_SEPARATION_WIDTH+WHEEL_SEPARATION_LENGTH)*angular.z)/WHEEL_RADIUS;
wheel_front_right=(linear.x+linear.y+(WHEEL_SEPARATION_WIDTH+WHEEL_SEPARATION_LENGTH)*angular.z)/WHEEL_RADIUS;
wheel_rear_left  =(linear.x+linear.y-(WHEEL_SEPARATION_WIDTH+WHEEL_SEPARATION_LENGTH)*angular.z)/WHEEL_RADIUS;
wheel_rear_right =(linear.x-linear.y+(WHEEL_SEPARATION_WIDTH+WHEEL_SEPARATION_LENGTH)*angular.z)/WHEEL_RADIUS;
// 右に配置されるたモータの逆転が必要
wheel_front_right=-1*wheel_front_right
wheel_rear_right =-1*wheel_rear_right

順運動学方程式の簡単な証明

ロボットがx軸方向へ移動の場合
$$\begin{bmatrix}v_{front-left}\\v_{front-right}\\v_{rear-left}\\v_{rear-right}\end{bmatrix}=\begin{bmatrix}linear.x\\linear.x\\linear.x\\linear.x\end{bmatrix}$$
ロボットがy軸方向へ移動の場合
$$\begin{bmatrix}v_{front-left}\\v_{front-right}\\v_{rear-left}\\v_{rear-right}\end{bmatrix}=\begin{bmatrix}-linear.y\\linear.y\\linear.y\\-linear.y\end{bmatrix}$$
z軸まわりロボット中心をめぐる回転の場合
$$\begin{bmatrix}v_{front-left}\\v_{front-right}\\v_{rear-left}\\v_{rear-right}\\width\\length\end{bmatrix}=\begin{bmatrix}-(width+length)*angular.z/2\\(width+length)*angular.z/2\\-(width+length)*angular.z/2\\(width+length)*angular.z/2\\distance_{left2right}\\distance_{front2rear}\end{bmatrix}$$
以上の式を合わせると、順運動学方程式が導かれる。

逆運動学backward kinematic方程式

ロボット車体中心のx・y軸方向線形速度とz軸まわりの角速度は、メカナム車輪の回転速度より、以下の式(逆運動学方程式)で表される。

linear.x =(wheel_front_left+wheel_front_right+wheel_rear_left+wheel_rear_right)*WHEEL_RADIUS/4;
linear.y =(-wheel_front_left+wheel_front_right+wheel_rear_left-wheel_rear_right)*WHEEL_RADIUS/4;
angular.z=(-wheel_front_left+wheel_front_right-wheel_rear_left+wheel_rear_right)*WHEEL_RADIUS/(4*(WHEEL_SEPARATION_WIDTH+WHEEL_SEPARATION_LENGTH))

関連記事

9軸IMUセンサ 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応

3+

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

6軸IMU~拡張カルマンフィルタ

概要

6軸IMU(慣性センサ)3軸加速度センサ + 3軸ジャイロセンサに対して拡張カルマンフィルタをかけてセンサ融合\((Sensor Fusion)\)またはデータ同化\((Data Assimilation)\)を行う。\(3\)軸加速度センサにてセンサローカル座標系(機体座標系と称す)の\(3\)軸における重力加速度gの分量が出力され、観測方程式によりオイラー角の\(θ,ϕ\)が計算できる。\(3\)軸ジャイロセンサから機体座標系の\(3\)軸まわりの角速度が出力され、状態方程式によりオイラー角の\(ψ,θ,ϕ\)が計算できる。また、ランダム誤差(ノイズ)が存在し、そしてドリフトが蓄積していくので、拡張カルマンフィルタの状態空間モデルでの補正を行う。\(6\)軸\(IMU\)慣性センサまたは\(9\)軸\(IMU\)慣性センサは、ロボット、ドローンなどの位置推定、姿勢推定などに大いに活用されている。本文の固定座標系は地面から見た、Z軸はUP方向の右手の法則に従う座標系とする。機体座標系は移動体にあったIMUセンサの座標系で、最初に機体座標系は固定座標系と重なるとする。固定座標系の\(Z, Y, X\)軸回りの固定角はヨー、ピッチ、ロールとする。本文の姿勢の表現は\(ZY’X^{\prime \prime}\)軸回り順のオイラー角\(ψ, θ, ϕ\)とする。

3軸加速度センサ

オイラー角

\(ZY’X^{\prime \prime}\)軸回り順として、つまり\(Z\)軸を第\(1\)回転軸、回転角度はオイラー角\(ψ\)、\(Y’\)軸を第\(2\)回転軸、回転角度はオイラー角\(θ\)、\(X^{\prime \prime}\)軸を第\(3\)回転軸、回転角度はオイラー角\(ϕ\)、即ち\(R_z(ψ)→R_y(θ)→R_x(ϕ)\)と記す場合、機体座標系とオイラー角の対応関係は以下の図に示す。オイラー角は必ず軸まわりの回転順と絡むので、変数は\(4\)つと考えても良い。本文では、オイラー角の回転方向と回転軸の関係は右手の法則に従う。

固定座標系・機体座標系・オイラー角(右手の法則)
固定座標系・機体座標系・オイラー角(右手の法則)

回転行列

固定座標系ベクトル\(p\)は物体座標系とともに、\(Z→Y’→X^{\prime \prime}\)軸まわり順として、それぞれオイラー角の\(ψ, θ, ϕ\)の回転移動を行って物体座標系ベクトル\(p’\)へ変換された場合、固定座標系ベクトル\(p\)、機体座標系ベクトル\(p’\)、三次元空間回転行列\(R_{zyx}\)の関係は、以下の式で表現できる。
$$ p=R_{zyx}p’ \\ R_{zyx} = R_z(ψ)R_y(θ)R_x(ϕ) \\ R_z(ψ) = \begin{bmatrix} cosψ & -sinψ & 0 \\ sinψ & cosψ & 0 \\ 0 & 0 & 1 \end{bmatrix} $$ $$ R_y(θ) = \begin{bmatrix} cosθ & 0 & sinθ \\ 0 & 1 &0 \\ -sinθ & 0 & cosθ \end{bmatrix} $$ $$ R_x(ϕ) = \begin{bmatrix}1 & 0 & 0\\ 0 & cosϕ & -sinϕ \\ 0 & sinϕ & cosϕ \end{bmatrix} $$ 本文の機体座標系(オイラー角)回転行列\(R\)の計算は右乗として、また固定座標系(固定角)回転行列\(R’\)の計算は左乗に注意する。\(R_{xyz}=R_{zyx}^{\prime},R_{zyx}=R_{xyz}^{\prime} \)の関係がある。

観測方程式

$$ p’ = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T \\ p = \begin{bmatrix} 0 & 0 &-g \end{bmatrix}^T $$ ただし、\(g\)は重力加速度\( (\simeq 9.81m/s^2 ) \)、\(a_x, a_y, a_z\)は重力加速度が機体座標系\(X^{\prime \prime}Y^{\prime \prime}Z^{\prime \prime}\)軸における成分。
$$ p’ = R^{-1}_{zyx}A = R_{x}^{-1}R_{y}^{-1} R_{z}^{-1} p $$ $$ \small R^{-1}_{zyx} = \begin{bmatrix} CθCψ & CθSψ & -Sθ \\ SϕSθCψ-CϕSψ & SϕSθSψ+CϕCψ & SϕSθ \\ CϕSθCψ+SϕSψ & CϕSθSψ-SϕCψ & CϕCθ \end{bmatrix} $$ ただし、\(C = cos, S = sin \)とする。
よって、\(3\)軸加速度センサの観測方程式は以下の式で表す。
$$ \begin{bmatrix}a_x\\a_y\\a_z\end{bmatrix} = \begin{bmatrix} gsinθ \\ -gsinϕcosθ \\ -gcosϕcosθ \end{bmatrix} $$

オイラー角\(ϕ,θ\)

よって、重力加速度\(g\)の分量により\(3\)軸加速度計センサのオイラー角が以下の式で求める。
$$\begin{bmatrix} ϕ \\ θ \end{bmatrix} = \begin{bmatrix} tan^{-1} \frac{a_y}{a_z} \\ tan^{-1}\frac{a_x}{\sqrt{a_y^2 + a_z^2}} \end{bmatrix} $$ ただし、ここでジンバルロック現象を避けたいので、\(ϕ, θ ≠ ±90°\)と限定する。また、ジンバルロック現象について、本サイト記事のオイラー角~ジンバルロック~クォータニオンで説明する。

なお、\(ψ\)角は、\(3\)軸加速度センサだけでは推定できないゆえに、\(3\)軸ジャイロセンサまたはコンパスセンサが必要になる。しかし、センサ融合手法として活用された拡張カルマンフィルタは、複数のセンサとも推定できる角度しか求めないので、\(ψ\)角は、以下の拡張カルマンフィルタの状態方程式から除外される。\(ψ\)角の求め方について、角速度\(ω_z\)の時間積分して単独に求められる。または、\(ψ\)角が別途観測可能なコンパスセンサを加え、これで9軸IMU = 6軸IMU + 3軸地磁気センサで拡張カルマンフィルタが適用するようになる。

3軸ジャイロセンサ

Gyrosensor_ωx_ωy_ωz
Gyrosensor_ωx_ωy_ωz

状態方程式

ジャイロセンサから測定した機体座標系の\(X^{\prime \prime}Y^{\prime \prime}Z^{\prime \prime}\)軸回りの角速度成分は、\(ZY’X^{\prime \prime}\)軸回りのオイラー角の時間微分\(\dot{ϕ}, \dot{θ}, \dot{ψ} \)との対応関係は以下の式で表す。
$$\scriptsize \begin{bmatrix}ω_x\\ω_y\\ω_z\end{bmatrix} = \begin{bmatrix} \dot{ϕ} \\ 0 \\ 0 \end{bmatrix} +R_x^{-1}(ϕ) \begin{bmatrix}0 \\ \dot{ θ}\\ 0 \end{bmatrix} + [R_y(θ)R_x(ϕ)]^{-1}\begin{bmatrix}0 \\ 0 \\ \dot{ψ}\end{bmatrix}$$ よって、回転行列を利用して、機体座標系の角速度から、\(ZY’X^{\prime \prime}\)軸回りのオイラー角の時間微分は求められる。$$\small\begin{bmatrix}\dot{ϕ}\\\dot{θ}\\\dot{ψ}\end{bmatrix} = \begin{bmatrix}1 & \frac{sinϕ sinθ}{cosθ}& \frac{cosϕ sinθ}{cosθ}\\0&cosϕ&-sinϕ\\0 & \frac{sinϕ}{cosθ} & \frac{cosϕ}{cosθ}\end{bmatrix}\begin{bmatrix}ω_x\\ω_y\\ω_z\end{bmatrix} $$ ただし、\( θ ≠ ±90° \)ジンバルロック回避、 \(\dot{ϕ}, \dot{θ}, \dot{ψ} \)はそれぞれオイラー角の時間微分、\(ω_x, ω_y, ω_z\)は機体座標系の\(X^{\prime \prime}Y^{\prime \prime}Z^{\prime \prime}\)軸回りの角速度成分となる。

オイラー角で状態方程式の表現

ジャイロセンサの角速度からオイラー角の計算式は以下となる。$$\begin{bmatrix}ϕ\\θ\end{bmatrix} = \begin{bmatrix}ϕ+\dot{ϕ}Δt\\θ+\dot{θ}Δt\end{bmatrix}$$ ただし、\(ψ\)角の積分計算はここで省略する。

誤差の補正

カルマンフィルタおよび本文の及んだ誤差はランダム誤差といい、バイアス誤差はすでにキャリブレーションなどの手法で取り除いたと想定する。加速度センサの精度が悪く、とくに運動中の場合、ただし加速度センサの誤差が蓄積しない。ジャイロセンサの精度が良く、ただしドリフト現象が起きる。ドリフトにより時間とともに誤差がじわじわと蓄積していく。補正手法として、加速度センサにジャイロセンサの出力値を組み合わせて、静的重み係数(経験値)を付ける相補フィルタの他、時系列分析から異なるセンサの出力値に信頼性に関わる動的重み係数を付ける、いわゆるカルマンフィルタ\((Kalman Filter)\)の再帰的アルゴリズム(手法)がある。フィルタとはランダム誤差(ノイズ)をフィルタリングする意味合いがある。性能からみればカルマンフィルタのほうは優れるのでよく使われる。

\(*\)機体座標系で\(3\)軸加速度センサから傾斜角度と\(3\)軸ジャイロセンサから回転角度を求めて、静的重み付け(経験値)で加算するセンサ融合の手法がある。出典5-をご参照ください。

カルマンフィルタ

\(wikipedia:\) カルマンフィルタ\((Kalman Filter,KF\)と略す\()\)は、誤差のある観測値を用いて、ある動的システムの状態を推定あるいは制御するための、無限インパルス応答フィルタの一種である。この解釈では理解できたというわけではなく、以下カルマンフィルタ、拡張カルマンフィルタで状態を推定してみる。

状態空間モデル

一般、汎用的な状態方程式、観測方程式は以下のとおり。
$$\begin{eqnarray*}&& x_t = F_{t-1}(x_{t-1}^{true}+ p_{t-1} ) + q_{t-1}\\&& y_t = H_t(x_t^{true}) + r_t\end{eqnarray*}$$ ただし、\(F(⋅),H(⋅)\)は実装に際して、\(3\)軸加速度センサ、\(3\)軸ジャイロセンサに掲載した状態方程式、観測方程式のとおりで利用する。システム誤差、観測誤差\((q_t, r_t)\)は期待値が\(0\)、分散が\((Q_t, R_t)\)の独立ガウス分布にする。
$$\begin{eqnarray*}&& q_t ~ N(0,Qt)\\&& r_t ~ N(0,Rt)\\&& E[q_t r_t]=0 \\&& p_{t-1}=x_{t-1}-x_{t-1}^{true}\end{eqnarray*}$$

パラメータ初期化

$$\begin{eqnarray*}&& \hat{x}_0 = E[x_0]\\&& \hat{P_0} = E[(x_0-\hat{x_0})(x_0-\hat{x_0})^T]\end{eqnarray*}$$

状態値、共分散行列予測ステップ(t>0)

$$\begin{eqnarray*}&& \bar{x_t} = F_{t-1}(\hat{x}_{t-1})\\&& \bar{P_t} = F_{t-1}\hat{P}_{t-1}F_{t-1}^T + Q_{t-1}\end{eqnarray*}$$ ただし、\(\bar{x_t}\)は予測値、\(\bar{P_t}\)は事前共分散行列、\(Q_{t-1}=E[q_{t-1}q_{t-1}^T]\)

カルマンゲイン、状態値、共分散行列更新ステップ

$$\begin{eqnarray*}&& K_t = \bar{P_t}H_t^T(H_t\bar{P_t}H_t^T + R_t)^{-1}\\
&& \hat{x_t} = \bar{x_t} + K_t(y_t – H_t\bar{x_t})\\&&\hat{P_t} = (I-K_tH_t)\bar{P_t} \end{eqnarray*}$$ ただし、\(K_t\)はカルマンゲイン、\(\hat{x_t}\)は状態推定値、\(\hat{P_t}\)は事後共分散行列、\(R_{t}=E[r_{t}r_{t}^T]\)

フローチャート

Kalman_Filter_Flowchart_2
Kalman_Filter_Flowchart_2

導出に関わる参考情報として、本サイト記事 カルマンフィルタの導出 に載ってある。

拡張カルマンフィルタ

拡張カルマンフィルタ\((Extended Kalman Filter,EKF\)と略す\()\)は、非線形フィルタリングである。前述した状態方程式、観測方程式より、以下の状態空間モデルの\(f(⋅)\)または\(H(⋅)\)が非線形関数であり、\(6\)軸\(IMU\)のオイラー角計算に拡張カルマンフィルタは適用される。テイラー展開より、\(2\)次微分以降の項目を省略して、非線形である\(f(⋅)\)の\(1\)次微分を線形化とし、カルマンフィルタのアルゴリズムが適用可能となる。しかし、\(f(⋅)\)の微分では\(f(⋅)\)の一部しか表現できず、この線形化処理(\(1\)次微分)に誤差を大きく招く場合がある。ここでは\(H(⋅)\)は線形関数\(I\)であるため、\(f(⋅)\)のみを線形化する。
$$\begin{eqnarray*}&& \hat{F}_{t-1} =\frac{\partial f_{t-1}(x)}{\partial x}|_{x=\hat{x}_{t-1}}\end{eqnarray*}$$

状態空間モデル

$$\begin{eqnarray*}&& x_t = f_{t-1}(x_{t-1}^{true}+p_{t-1}) + q_{t-1}\\&& y_t = H_t(x_t^{true}) + r_t\end{eqnarray*}$$

パラメータ初期化

$$\begin{eqnarray*}&& \hat{x}_0 = E[x_0]\\&& \hat{P_0} = E[(x_0-\hat{x_0})(x_0-\hat{x_0})^T]\end{eqnarray*}$$

状態値、共分散行列予測ステップ(t>0)

$$\begin{eqnarray*}&& \bar{x_t} = f_{t-1}(\hat{x}_{t-1})\\&& \bar{P_t} = \hat{F}_{t-1}\hat{P}_{t-1}\hat{F}_{t-1}^T + Q_{t-1}\end{eqnarray*}$$ ただし、\(\bar{x_t}\)は予測値、\(\bar{P_t}\)は事前共分散行列、\(Q_{t-1}=E[q_{t-1}q_{t-1}^T]\)

カルマンゲイン、状態値、共分散行列更新ステップ

$$\begin{eqnarray*}&& K_t = \bar{P_t}H_t^T(H_t\bar{P_t}H_t^T + R_t)^{-1}\\
&& \hat{x_t} = \bar{x_t} + K_t(y_t – H_t\bar{x_t})\\&&\hat{P_t} = (I-K_tH_t)\bar{P_t} \end{eqnarray*}$$ ただし、\(K_t\)はカルマンゲイン、\(\hat{x_t}\)は状態推定値、\(\hat{P_t}\)は事後共分散行列、\(R_t=E[r_{t}r_{t}^T]\)

フローチャート

Extended_Kalman_Filter_Flowchart_1
Extended_Kalman_Filter_Flowchart_1

拡張カルマンフィルタを6軸IMUへの適用

状態空間モデルは以下のようになる。
$$\scriptsize x_t=f_{t-1}(x_{t-1}^{true}+p_{t-1})+q_{t-1}=\begin{bmatrix}ϕ+\dot{ϕ}Δt\\θ+\dot{θ}Δt\end{bmatrix}+q_{t-1}$$
$$y_t=H_t(x_t^{true})+r_t=\begin{bmatrix}ϕ\\θ\end{bmatrix}+r_t$$

予測値は以下のように求められる。
$$\bar{x_t}=\begin{bmatrix}ϕ+\dot{ϕ}Δt\\θ+\dot{θ}Δt\end{bmatrix}\\\scriptsize =\begin{bmatrix}ϕ+Δt(ω_x+ω_y\cdot sinϕ\cdot tanθ+ω_z\cdot cosϕ\cdot tanθ)\\θ+Δt(ω_y\cdot cosϕ-ω_z\cdot sinϕ)\end{bmatrix}$$ ただし、\(ω_x, ω_y, ω_z\)はジャイロセンサからの観測値。
状態観測値は以下のように求められる。
$$y_t=\begin{bmatrix} ϕ \\ θ \end{bmatrix} = \begin{bmatrix} ϕ \\ θ \end{bmatrix} = \begin{bmatrix} tan^{-1} \frac{a_y}{a_z} \\ tan^{-1}\frac{a_x}{\sqrt{a_y^2 + a_z^2}} \end{bmatrix} $$ ただし、\(a_x, a_y, a_z\)は加速度センサからの観測値。

\(1\)次微分線形化(ヤコビアン行列)は以下のように求められる。
$$\hat{F}_t =\frac{\partial f_{t-1}(x)}{\partial x}|_{x=\hat{x}_{t-1}}\\=\begin{bmatrix}\frac{\partial (ϕ+\dot{ϕ}Δt)}{\partial ϕ}&\frac{\partial (ϕ+\dot{ϕ}Δt)}{\partial θ}\\\frac{\partial (θ+\dot{θ}Δt)}{\partial ϕ}&\frac{\partial (θ+\dot{θ}Δt)}{\partial θ}\end{bmatrix}\\\scriptsize=\begin{bmatrix}1+Δt(ω_y\cdot cϕ\cdot tθ-ω_z\cdot sϕ\cdot tθ)&Δt(\frac{ω_y\cdot sϕ}{c^{2}θ} + \frac{ω_z\cdot cϕ}{c^{2}θ})\\-Δt(ω_y\cdot sϕ+ω_z\cdot cϕ)&1\end{bmatrix}$$ ただし、\(c = cos, s = sin, t = tan\)

拡張カルマンフィルタによる姿勢推定動作の可視化

拡張カルマンフィルタを実装したPythonスクリプトはGitHubで公開した。
imu_ekf Repository@GitHub
実行した結果は以下のようになる。画像をクリックするとYouTubeへジャンプする。

imu_ekf
imu_ekf

カルマンフィルタの解釈

カルマンフィルタの原理は以下のイメージに示す。

kalman_filter_principle_n
kalman_filter_principle_n

カルマンフィルタでは、状態推定値を予測結果\(x_t\)(実装例ではジャイロセンサーデータ)と観測データ\(y_t\)(実装例では加速度センサデータ)の線形結合で合成し,その誤差(共分散)を最小にする推定法だと分かる。これはシステム誤差、観測誤差の数学期待が\(0\)のガウス分布との前提条件から由来した推定法である。しかし、カルマンフィルタをかけることで、状態推定値は予測結果と観測データの間にあるのは、真値からかなり乖離してしまう場合にあるのか。これはシステム誤差と観測誤差が無相関かつ直交という前提から、勿論真値が推定値と観測値の間にある結論を結ぶ考えである。また、ジャイロセンサーデータと、加速度センサデータとも観測値\(y_t\)にする方法がある。それぞれのパーフォーマンスの検証は、比較的精確な実験環境(比較用の高精度ジャイロセンサ、加速度センサ、エンコーダ、モータ)はないと、実は容易ではない。というよりも、シミュレーションをかけてカルマンフィルタのアルゴリズムを検証するのが、確実に可能である。

他のフィルタについて

\(UKF(Unscented Kalman Filter)\)は、非線形の測量方程式\(F(⋅), H(⋅)\)がテイラー展開より線形化するのではなく、重み付き線形回帰より線形化する手法。\(UKF\)の精度は拡張カルマンフィルタより高いという実験結果はある。また、線形問題に対しては、カルマンフィルタと効果が同様。\(UKF,EKF\)が、状態値、観測値ともガウス分布(正規分布)に従うまたは近似する場合限り、論理的に適用可能とされる。

ロボットSLAM~拡張カルマンフィルタ

上述の拡張カルマンフィルタが\(IMU\)センサへの応用のみならず、同じ理由で、時系列の移動ロボット\(SLAM\)の\(Gmapping\)法にも、エンコーダ情報(オドメトリ情報または\(odom\)情報)とレーザセンサのLidarスキャンマッチング情報をセンサ融合またはセンサフュージョンへ応用される。不整な環境でない限り、\(Lidar\)スキャンマッチング情報のみを使用した\(Hector\)法より精度が良いだろう。不整な環境でエンコーダ情報が正確な位置情報に大いに誤差を招くことがあるから、センサ融合にマイナス効果が出ると考えられる。また、高精度、高スキャンレートの\(Lidar+IMU\)を使用した\(Hector\)法などの手法はある。もう少し詳細な情報は、本サイト記事 SLAM~拡張カルマンフィルタ に載ってある。

参考文献

1-wikipedia: カルマンフィルタオイラー角
2-Christopher J. Fisher氏: Analog Device AN-1057、アプリケーション・ノート、加速度センサーによる傾きの検出
3-田島洋氏: マルチボディダイナミクスの基礎―3次元運動方程式の立て方
4-萩原淳一郎氏ら: 基礎からわかる時系列分析 Rで実践するカルマンフィルタ・MCMC・粒子フィルタ
5-Bonnie Baker氏: センサ融合を加速度センサやジャイロスコープに適用

関連記事

粒子フィルタ
SLAM~Unscentedカルマンフィルタ
9軸IMU 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応
YDLIDAR G4=16m 薄型 ROS対応SLAM LIDAR
点検向け自律移動ロボットRED(薄型・小型)
研究開発用 台車型ロボット キット

2+

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

ZAIF MACD自動取引ロボット

概要

ZaifのMACD値をみてビットコインの売買を行う自動取引ロボットです。

ソースコード

githubに公開ずみ。

依存環境

python3.6 or above, zaifapi, zaifdata

使用手順

$git clone https://github.com/soarbear/Zaif_MACD_Robot.git
$cd Zaif_MACD_Robot
$sudo pip3 install zaifapi
$python3 zaif_macd_1h.py

免責事項

このロボットのご利用は自己責任でご理解ください。

以上。

0

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

ロータリエンコーダによる速度計算

はじめに

ロータリエンコーダ(Rotary Encoder)は、入力軸の回転の変位を内蔵した格子円盤を基準としてデジタル信号として出力する角位置センサである。回転を測定するセンサではもっとも一般的である。同様の仕組みで直線変位を検出するものをリニアエンコーダという。そもそもは回転角測定用検出器としての考案であるが、ロボットや情報機器のサーボ系統の位置決めなど、新たな使用用途が確立されてきている。とwikiよりそのまま引用する。

光学式LEDセンサまたは非接触型磁気センサ(ホールセンサ)を使用したロータリエンコーダ(エンコーダと略す)により、回転速度と方向が検出可能とするエンコーダがインクリメンタル・ロータリー・エンコーダと呼ばれる。光学式LEDセンサとホールセンサの原理は類似しているが、光を検出するための感光素子を使用するのと、磁界の脈動を検出するためのホール素子を使用するセンサである。

以下のように、インクリメンタル・ロータリー・エンコーダを使用した車輪の直線速度を計算してみる。他に、回転角度の絶対値を出力するアブソリュート・ロータリー・エンコーダがあるが、ここで割愛とする。

ロータリエンコーダについて_new
ロータリエンコーダについて

エンコーダ分解能

エンコーダ分解能を表すには、PPR LPR CPRとの指標またパラメータがある。PPRあるいはLPRは、Pulses or Lines Per Revolution即ち、車輪1回転あたりのパルス数である。CPRは、Counts Per Revolution 即ち、車輪1回転あたりのカウント数である。PPR CPRの換算について、位相Aと位相Bパルスの状態0/1を組み合わせて、00、01、11、10の4パタンがあり、ついては「4倍速周波数」CPR = PPR * 4 の関係がある。

ギアボックス(減速機)つきDCモータ、エンコーダの回転軸がモータシャフトに取り付けたの場合、エンコーダ分解能 = 車輪1回転(即ちギアボックス出力シャフト1回転)当たり、エンコーダが出力するパルス数 = 基礎パルス数(モータシャフト1回転当たりのエンコーダが出力するパルス数) * 減速比。ここの減速比は虫眼鏡のズーム倍率と例えることができる。

上図のようなロータリエンコーダの分解能が、以下のように計算される。
基礎パルス数 = 8(p)
減速比 = モータ回転速度 / モータシャフト回転速度 = 100

車輪1回転につき、エンコーダ位相AのPPRあるいはLPR = 800(p)
車輪1回転につき、エンコーダ位相BのPPRあるいはLPR = 800(p)
位相Aと位相Bの位相差 = 90°(センサAとセンサBの位相差)から、車輪1回転あたりのカウント数CPR = 800(p)(PPR) * 4 = 3200(c)

状態カウント数

状態カウント数は、状態(時計まわりの回転か反時計まわりの回転か静止)の変化をカウントしたパルス数である。もし時計まわりの回転で状態カウント数が増えると、以下の擬似コードで記述される。

if 時計まわりの回転
then 状態カウント数(c) = 状態カウント数(c) + 1(c)
else if 反時計まわりの回転
then 状態カウント数(c) = 状態カウント数(c) – 1(c)
else if 静止
then 状態カウント数(c) = 状態カウント数(c) + 0(c)
end if

車輪の直線速度m/s

車輪の直線速度は、以下の式より計算される。
車輪の直線速度(m/s) = 車輪の円周の長さ(m) * 状態カウント数(c) / [エンコーダ分解能CPR(c) * パルスをカウントした時間(s)]

車輪の回転速度(角速度)rad/s

車輪の回転速度(角速度)は、以下の式より計算される。
車輪の角速度(rad/s) = 2π * 状態カウント数(c) / [エンコーダ分解能CPR(c) * パルスをカウントした時間(s)]

関連記事

9軸IMU 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応
エンコーダ付きDCモータPID制御の実験-haya_imu応用例
エンコーダ付きDCモータPID制御の実験-hayate_imu応用例
点検向け自律移動ロボットRED(薄型・小型)
研究開発用 台車型ロボット キット
SLAM~拡張カルマンフィルタ

1+

ロボット・ドローン部品お探しなら
ROBOT翔・電子部品ストア

ROSの座標変換TFについて

ROS座標

ROSでは、map,odom,base_footprint, base_link,base_laser等の座標(データは「フレーム」の表現を使用)は使われる。

ROS座標
ROS座標

map:名前のとおり、ロボットが位置するワールド座標。
odom:mapレイヤの次にくる、オドメトリ(odometry・距離計)と真のワールド座標のずれを表現する。
base_link:オドメトリodomでのロボット位置。ローカル座標。
base_footprint:地上でのbase_linkの投影ですが、但しz値は異なる。ローカル座標。
base_laser:レーザスキャナSlam Lidarの位置。ローカル座標。

TF変換

TFは分散システム前提の座標変換のライブラリであり、2フレーム間の位置姿勢関係の報告(transform_broad_caster)を受けて。全てのフレームを絡むツリーを構築して、ツリーをたどって知りたい位置姿勢を取得する(transform_listener)ような仕組みとなる。以下はフレームツリーの例。

ROS_view_frames
ROS_view_frames

位置姿勢の表現について、位置はx,y,z(m)、 姿勢はクォータニオン四元数にて表示する。クォータニオンについては、記事:ROS・Unity・ロボット・ドローン姿勢制御に関わるクォータニオンを参照する。また、TF変換にtfとtf2パッケージがあり、tf2はtf_staticトピックに静的なフレームを追加できる。tf_staticトピックで受け取った変換は時間に関わらずに利用可能。

関連記事

9軸IMU 6軸/9軸フュージョン 低遅延 USB出力 補正済み ROS対応
SLAM~拡張カルマンフィルタ
研究開発用 台車型ロボット キット

0